ASSIGNMENT SET - I

Mathematics: Semester-I

> M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-102

Paper: Complex Analysis

Answer all the questions

1. Let $f(z)=z^{4}+z^{2}+8 z-4$. Prove that exactly three roots of the polynomial $\mathrm{f}(\mathrm{z})$ lie in $1<|\mathrm{z}|<3$, and there is exactly one root of the polynomial $\mathrm{f}(\mathrm{z})$ in the disc $|z+2|<\frac{1}{2}$.
2. $f(z)=u(x, y)+i v(x, y)$ in a domain D , where v is a harmonic conjugate of u and u is also a harmonic conjugate of v. Then show that $f(z)$ is constant throughout in D.
3. State and proof the Cauchy's Residue theorem.
4. Using the method of residue formula evaluate $\int_{|z|=3} \frac{\sin \pi z^{2}+c o s \pi z^{2}}{(z-1)(z-2)}$.
5. Give two Laurent series expansions in powers of z for the function

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

and specify the regions in which those expansions are valid.
6. Show that if $f(z)$ is analytic within and on a simple closed contour C and z_{0} is not on C , then
7. $\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$
8. Define Bilinear transformation. Characteristic the set of all Bilinear transformation which maps the upper half plane onto the interior unit disk.
9. Define conformal mapping. Is bilinear transformation a conformal mapping? justifies your answers.
10. Using the calculus of residues evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}$.
11.Let a function is defined by $f(z)=\left\{\begin{array}{c}\frac{(\bar{z})^{2}}{z}, z \neq 0 \\ 0, z=0\end{array}\right.$. Show that the C-R equations are satisfied at $(0,0)$ although $\mathrm{f}(\mathrm{z})$ is not differentiable at $(0,0)$.
12. Characteristic all analytic functions $\mathrm{f}(\mathrm{z})$ whose real part is given by

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\log \left(\sqrt{x^{2}+y^{2}}\right)
$$

13. Find the upper bound for $\int_{c} \frac{1}{10+z^{2}} \mathrm{~d}$, where $\mathrm{c}=\mathrm{z}(\mathrm{t})=2 e^{i t},-\pi \leq t<\pi$.
14.Show that the curve C parameterized by $\mathrm{z}(\mathrm{t})=\left\{\begin{array}{r}t\left(\cos \left(\frac{1}{t}\right)+i \sin \left(\frac{1}{t}\right)\right) \\ 0\end{array} \quad\right.$ if $t=0 \quad$ if $0<\mathrm{t} \leq 1, \quad$ is non rectifiable.
14. Give an example of a Harmonic function.
15. Using the calculus of residue evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
16. With the help of residue, find the inverse Laplace transformation $f(t)$ of $F(s)=\frac{s}{\left(s^{2}+a^{2}\right)^{2}}(a>0)$.
17. Find the singular points of the function $f(z)=\frac{\log (z+2+3 i)}{z^{4}+1}$.
18. Find the Mobious transformation that maps $0,1, \infty$ to the respective points $-i, \infty, 1$.
19. Write Taylor's and Laurent's series representation of a function $f(z)$ by stating necessary condition/s for each of the series. Hence discuss under what condition/s the Laurent's series of the said function reduces to Taylor's series of the said function.
20. Show that $f(z)=z \bar{z}$ is nowhere analytic.
22.Is it possible to evaluate the integral $\int_{C} f(z) d z$, where $f(z)=\frac{(5 z+2)}{(z(z-2))}$ and $C:|z|=1$, using the single residue of $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$ at $z=0$? Justify.
23.State the Laurent's theorem.
21. Find the essential singularities of $f(z)=e^{\frac{1}{z}}$.
22. Let C be any simple closed contour, described the positive sense in the z-plane and write $g(w)=\int_{C} \frac{2 z+z^{3}}{(z-w)^{3}} d z$. Then find $g(w)$ when w is inside C.
23. What is the condition for the existence of conformal mapping of the function
$\mathrm{f}(z)=\frac{a z+b}{c z+d}$?
24. Without evaluating, find an upper bound of the integral $\int_{C} \frac{e^{2 z}-\frac{\sqrt{3} \bar{z}}{2}}{z^{2}+2} d z$, where C
is the arc of the circle $|z|=\sqrt{3}$ from $z=-\sqrt{3}$ to $z=-i \sqrt{3}$ taking in anti-clockwise
direction.
25. If $(z)=u+i v$, is an analytic function and $u=e^{-x}(x \sin y-y \cos y)$, then find v.
29.State and prove the Rouche's theorem
26. Find the order of the pole at $z=\frac{\pi}{4}$ of the function $f(z)=\frac{1}{\cos z-\sin z}$.
31.If C is a regular arc joining the $A(z=a)$ to $B(z=b)$ then show that $\int_{A B} z d z=\frac{b^{2}-a^{2}}{2}$
27. Using the method of residues, evaluate : $\int_{0}^{\infty} \frac{x \sin m x}{x^{2}+a^{2}} d x$
28. State and prove Liouville's theorem.
29. Find a conformal map of the unit disk $|z|<1$ onto the right halfplane $R e(w)>0$.
30. Find the total number of zeros of a function $F(z)=z^{8}-5 z^{5}-2 z+1$ inside the circle $|\mathrm{z}|<1$.
31. State the Jordan's Lemma.
32. Evaluate : $\int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}-2 x+10} d x$, using the method of residue only.
33. Sketch $S=\left\{z:\left|\frac{z+1}{z-1}\right|<1\right\}$ and decide whether it is domain.
34. Find the value of x and y for which $\sin (x+i y)=\cosh (4)$.
35. Show that the function $f(z)=\frac{z}{e^{z}-1}$ has a removable singularity at the origin.
41.Evaluate: $\int_{|z|=1} z \bar{Z} d z$.
36. Find the coefficient of $\frac{1}{z^{3}}$ in the Laurent series expansion of $f(z)$ for $z>$ 2 where $f(z)=\frac{1}{z^{2}-3 z+2}$.
37. Find the Mobious transformation that maps $0,1, \infty$ to the respective points $0, i, \infty$.
44.Is the function $u=2 x y+3 x y^{2}-2 y^{3}$ is harmonic?
38. Suppose that $f(z)=u(x, y)+i v(x, y)$ and $f^{\prime}(z)$ exists at a point $z_{0}=$ $x_{0}+i y_{0}$. Then prove that the first order partial derivatives of u and v must exists at $\left(x_{0}, y_{0}\right)$ and they must satisfy the Cauchy Riemann equations: $u_{x}=v_{y} ; u_{y}=-v_{x}$ at $\left(x_{0}, y_{0}\right)$. Also prove that $f^{\prime}\left(z_{0}\right)=u_{x}+$ $i v_{x}$ at $\left(x_{0}, y_{0}\right)$.
46.Evaluate the integral $\int_{C} \frac{f(z)+f(-1 / z)}{(z-i)^{2}} d z$ where C is the simple closed contour $|z-i|=\frac{1}{2}$, in counter clockwise sense and $f(z)$ is analytic in $|z-i| \leq 1$.
47.Define Meromorphic function. If $f(z)=u(x, y)+i v(x, y)$ and $g(z)=$ $v(x, y)+i k(x, y)$ be non-zero analytic functions on $|z|<1$. Then prove that $f(z)$ is a constant function.
39. Find the real part of the analytic function whose imaginary part is $x^{2}-$ $y^{2}+\frac{x}{x^{2}+y^{2}}$. Also find the analytic function.
40. Using the method of residues: Evaluate $\int_{0}^{2 \pi} \frac{d \phi}{a+\cos \phi}, a>1$.
50.Define zero's of an analytic function. Find the zero's of the function $f(z)=\cosh z$.
41. State and prove the Cauchy's Residue Theorem.
42. State and prove the Jordon's Lemma.
43. State Cauchy's Integral Theorem. Using the method of residue calculus, Evaluate: $\int_{0}^{\infty} \frac{\sin x}{x^{p}} d x, 0<p<1$.
44. Let $w=f(z)=\frac{\mathrm{az}+\mathrm{b}}{c z+d}$ is a bilinear transformation. Then find the inverse of the transformation. Is it again a bilinear? Also find the determinant of both the transformations.
45. Use the Schwartz-Chritoffel transformation to arrive at the transformation $w=z^{m}(0<z<1)$, which maps the half plane $y \geq 0$ onto the wedge $|w| \geq 0,0 \leq \arg w \leq m \pi$ and transforms the point $z=1$ to the point $w=1$.
46. Evaluate : $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+a^{2}} d x, m>0$.
57.Define Laurent's series. Find the Laurent's series expansion of $\sin \frac{1}{z}$.
47. Classify the singularity $z=0$ of the function $f(z)=\frac{\cosh \left(z^{3}-1\right)}{z^{7}}$ in terms of removable, pole and essential singularity. In case $z=0$ is a pole, specify the order of the pole.
48. Evaluate the residue of the function $f(z)=\frac{\cosh \left(z^{3}-1\right)}{z^{7}}$ at $z=0$.
60.Using part (b) $f(z)=\frac{\cosh \left(z^{3}-1\right)}{z^{7}}$, where $C:|z|=1$ taken in the positive direction.
49. Find the value of $\oint_{c} \cdot \frac{\cos ^{2}(t z)}{z^{3}} d z$ where c is the circle $|z|=1$ and $t>0$.
50. Define branch and branch cut for a multi-valued function $f(z)$.
51. Define Jordan arc with an example which is not a Jordan arc.
52. Evaluate $\int_{c} \frac{d z}{z}$, where c denotes the circle $|z|=r$, for any real r.
53. Find the bilinear transformation which transforms the points $Z=2,1,0$ into $\omega=$ $1,0, i$ respectively.
54. Evaluate $\int_{0}^{i+1}\left(x^{2}-i y\right) d z$ along $y=x$.
55. State Liouville's theorem connecting on complex analysis.
56. Find the points at which $w=\sin (z)$ is not conformal
57. When α is a fixed real number, show that the function

$$
f(z)=\sqrt[3]{r} e^{\frac{i \theta}{3}} \quad(r>0, \alpha<\theta<\alpha+2 \pi)
$$

has derivative everywhere in its domain of definition.
70. Find the value of $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$ by contour integration
71. Let α be a zero of $f(z)$ of order m and α be a zero of $\varphi(z)$ of order n. find the order of zero at $z=\alpha$ of the function $f(z) \varphi(z)$.
72. Use an antiderivative and evaluate the integral $\int_{-1-i \sqrt{3}}^{1+i \sqrt{3}}\left(\frac{5 \pi}{z}+3 i z^{i-1}\right) d z$ by taking any path of integration in region $y<\sqrt{3} x$ from $z=-1-i \sqrt{3}$ to $z=1+i \sqrt{3}$, except for it's end points. Use principal branches of the required function.
73. Let C be the circle $|z|=\frac{3}{2}$ in the complex plane and $\int_{c}\left(\frac{z+1}{z^{2}-3 z+2}+\frac{a}{z-1}\right) d z=0$. Then find the value of a.
74. Determine the number of roots, counting multiplicities, of the polynomial $z^{4}+$ $3 z^{3}+6$ inside $|z|=2$.
75. Find the Taylor or Laurent series expansion of the function $f(z)=\frac{3}{z(z-i)}$ with center at $\mathrm{z}=-1$ and region of convergence : $1<|z+i|<2$

State and prove cauchy's integral formula in connection with complex analysis.
76. Let C be a closed rectifiable Jordan curve, if $f(z)$ is analytic on $\mathrm{I}(\mathrm{C})$ except for a finite number of poles in $\mathrm{I}(\mathrm{C})$ and $f(z) \neq 0$ any where in C , then $\frac{1}{2 \pi i} \int_{c} \frac{f^{\prime}(z)}{f(z)} d z=$ $N-P$ where N and P are the number of zero's and pole's respectively of $f(z)$ inside C, each counted according to their order.
77. Use the Schwarz-chritoffel transformation to arrive at the transformation $w=$ $z^{m}(0<m<1)$, which maps the half plane $y \geq 0$ onto the wedge $|w| \geq 0,0 \leq$ $\arg w \leq m \pi$ and transforms the point $z=1$ to onto the point $w=1$.
78. Find the fixed points of the transformation $w=\frac{z-1}{z+1}$.
79. A linear transformation with two distinct fixed points α and β can be put in a form $\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}$, where k is constant. Under what value's of k, the above transformation is elliptic, hyperbolic and loxodromic?
80. Evaluate $\int_{C} \frac{e^{z}}{z^{2}(z+1)^{3}} d z$, where $\mathrm{C}: 9 x^{2}+4 y^{2}=36$
\qquad

